

SHRI SHANKARACHARYA TECHNICAL CAMPUS, BHILAI

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)

S. No.	Board of Study	Board of Subject Study Code Subject		Periods per Week		Scheme of Examination Theory / Practical			Total Marks	Credit L+(T+P)/2	
				L	Т	Р	ESE	СТ	ТА		
1	Mech. Engg.	ME225201	Theory of Metal Cutting	3	2	-	100	20	20	140	4
2	Mech. Engg	ME225202	Industrial Robotics	3	2	-	100	20	20	140	4
3	Mech. Engg	ME225203	Quality Control and Reliability Engineering	3	2	-	100	20	20	140	4
4	Mech. Engg	ME225204	Modeling & Simulation of Manufacturing System	3	2	-	100	20	20	140	4
5	Refer	Table –I	Professional Elective-II	3	2	-	100	20	20	140	4
6	Mech. Engg	ME225291	Industrial Robotics Lab	-	-	4	75	-	75	150	2
7	Mech. Engg	ME225292	Modeling & Simulation of Manufacturing System Lab	-	-	4	75	-	75	150	2
Total				15	10	8	650	100	250	1000	24

2nd Semester

L- Lecture T- Tutorial

P- Practical, ESE- End Semester Exam

CT- Class Test TA- Teacher's Assessment

	Table-II					
	PROFESSIONAL ELECTIVE II					
S.No.	Board of Study	Subject Code	Subject			
1	Mech. Engg.	ME225221	Smart Material & Structure			
2	Mech. Engg.	ME225222	Nano-Technology			
3	Mech. Engg.	ME225223	Advance Material and Processing			
4	Mech. Engg.	ME225224	Organizational Behaviour			

Note (1) – 1/4th of total strength of students subject to minimum of twenty students is required to offer an elective in the college in a Particular academic session.

Note (2) - Choice of elective course once made for an examination cannot be changed in future examinations.

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225201	Theory of Metal Cutting	L = 2	T = 0	P = 0	Credits = 2
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

1. The course provides students with fundamental knowledge and principles in material removal processes.On successful completion of the course, the student will be able to:2. In this course, the students apply the fundamentals and principles of metal cutting to practical applications through multiple labs using lathes, milling machines, grinding machines, and drill presses, Computer Numerical Control etc.1. Understand and analyze the fundamentals of different cutting tool and materials.3. To demonstrate the fundamentals of machining processes and machine tools.3. Understand and analyze tool wear and tool life- mechanisms and effects.4. To develop knowledge and importance of metal cutting parameters.5. To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms.5. To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms.6. No successful completion of the course, the student will be able to:1. Understand and analyze the fundamentals of different cutting tool and materials.2. Understand and analyze Mechanics of metal cutting. 3. Understand and analyze tool wear and tool life- mechanisms and effects.5. To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms.5. Understand and analyze the Thermal Aspects and selection of cutting fluids and tool wear mechanisms.	Course Objective	Course Outcomes
	 The course provides students with fundamental knowledge and principles in material removal processes. In this course, the students apply the fundamentals and principles of metal cutting to practical applications through multiple labs using lathes, milling machines, grinding machines, and drill presses, Computer Numerical Control etc. To demonstrate the fundamentals of machining processes and machine tools. To develop knowledge and importance of metal cutting parameters. To develop fundamental knowledge on tool materials, cutting fluids and tool wear mechanisms. 	 On successful completion of the course, the student will be able to: 1. Understand and analyze the fundamentals of different cutting tool and materials. 2. Understand and analyze Mechanics of metal cutting. 3. Understand and analyze cutting force and its measurements using dynamometers and temperature distribution during metal cutting. 4. Understand and analyze tool wear and tool lifemechanisms and effects. 5. Understand and analyze the Thermal Aspects and selection of cutting fluids and Optimum cutting speed and cost. techniques.

Unit-I

CO1

Mechanics of Metal Cutting: Geometry of Metal Cutting Process, Chip formation, Chip thickness ratio, radius of chip curvature, cutting speed, feed and depth of cut – Types of chips chip breakers. Orthogonal and Oblique cutting processes – definition, Forces and energy calculations (Merchant's Analysis) – Power consumed – MRR- Effect of Cutting variables on Forces, Force measurement using Dynamometers.

Unit-II

CO2

Single Point Cutting Tool: Various systems of specifications, single point cutting tool geometry and their inter-relation. Theories of formation of built-up edge and their effect, design of single point contact tools throwaway inserts.

Unit-III

Tool Materials And Their Properties: Characteristics of tool materials, types of tool materials – carbon tool steels, high speed steels, cast alloys, cemented carbides, ceramics, diamonds, SIALON, CBN, UCON, recommended cutting speeds for the above tools, discussion on die steels, air, water, oil hardening of tools

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

and their applications

Unit- IV

CO4

CO5

Tool Life and Tool Wear: Theories of tool wear – adhesion, abrasive and diffusion wear mechanisms, forms of wear, Tool life criteria and machine ability index Types of sliding contact, real area of contact, laws of friction and nature of frictional force in metal cutting. Effect Tool angle, Economics, cost analysis, mean co-effect of friction.

Unit- V

Cutting Temperature: Sources of heat in metal cutting, influence of metal conditions, Temperature distribution, zones, experimental techniques, analytical approach. Use of tool- work thermocouple for determination of temperature. Temperature distribution in Metal Cutting. Cutting fluids: Functions of cutting fluids, types of cutting fluids, properties, selection of cutting fluids. Cutting tool materials: Historical developments, essential properties of cutting tool materials, types, composition and application of various cutting tool materials.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Metal Cutting Principles	MC Shaw		Oxford and IBH Publications, New
				Delhi, 1969
2	Fundamentals of	Boothryd/ Edward		Tata McGraw Hill
	Machining			
3	Tool Design	David Son / Lacain/		Tata McGraw Hill
	-	Goud		

S. No.	Title	Authors	Edition	Publisher
1	Fundamentals of Tool Design	Wilson fw		ASTME PHI
				2010
2	Technology of Machine Tools	Steve F. Krar,		Tata McGraw Hill
		Arthur R. Gill		Education (India) Pt.
		and Peter Smid		Ltd., 2013

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225202	Industrial Robotics	L = 2	T = 0	P = 0	Credits = 2
Enclusting Cohome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To understand the basic concepts	On successful completion of the course, the student will
associated with the design and Functioning	be able to:
and applications of Robots	1. Explain 3D translation and orientation representation
2. To study about the drives and sensors used	& illustrate the robot arm kinematics and use of
in Robots	Robot Operating System usage.
3. To learn about analyzing robot kinematics	2. Design / simulate a robot which meets kinematic
and robot programming	requirements.
	3. Apply localization and mapping aspects of mobile
	robotics.
	4. To understand ROS applications.
	5. To understand robot programming Course Content.

Unit-I

Introduction: Definitions, Types of Robots, Application of Robots, Representing Position and Orientation, Representing Pose in 2-Dimensions, Representing Pose in 3-Dimensions, Representing Orientation in 3-Dimensions, Combining Translation and Orientation. SLE: Matlab program for translation and orientation.

Unit-II

Time and Motion: Trajectories, Smooth One-Dimensional Trajectories, Multi-Dimensional Case, Multi-Segment Trajectories, Interpolation of Orientation in 3D, Cartesian Motion, Time Varying Coordinate Frames, Rotating Coordinate Frame, Incremental Motion, Inertial Navigation Systems. Mobile Robot Vehicles, Mobility, Car-like Mobile Robots, Moving to a Point, Following a Line, Following a Path, Moving to a Pose. SLE: Flying Robots.

Unit-III

Navigation: Reactive Navigation, Braitenberg Vehicles, Simple Automata, Map-Based Planning, Distance Transform, D*, Voronoi Roadmap Method, Probabilistic Roadmap Method, M.Tech - Industrial Automation & Robotics Department of Mechanical Engineering, NIE, Mysuru Page 36 Localization, Dead Reckoning, Modeling the Vehicle, Estimating Pose, Using a Map, Creating a Map, Localization and Mapping, Monte-Carlo Localization. SLE: Matlab programming of localization.

Unit- IV

Robot Arm Kinematics: Describing a Robot Arm, Forward Kinematics, A 2-Link Robot, A 6- Axis Robot,

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO2

CO1

CO3

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Inverse Kinematics, Closed-Form Solution, Numerical Solution, Under-Actuated Manipulator, Redundant Manipulator, Trajectories, Joint-Space Motion, Cartesian Motion, Motion through a Singularity. SLE: Joint Angle Offsets, Determining Denavit-Hartenberg Parameter.

Unit- V

CO5

Getting Started with ROS: Installing ROS, Understanding the ROS Filesystem level, Packages, Stacks, Messages, Services, Understanding the ROS Computation Graph level, Nodes, Topics, Services, Messages, Bags, Master, Parameter Server, Creating workspace, Creating & Building an ROS package, Creating & Building the node, Visualization of images, Working with stereo vision, 3D visualization, Visualizing data on a 3D world using rviz. SLE: Saving and playing back data in ROS.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Robotics, Vision and Control:	Peter Corke		Springer Tracts in
	Fundamental Algorithms in			Advanced Robotics,
	MATLAB			Volume 73, 2011
2	Learning ROS for Robotics	Aaron Martinez		Packt Publishing,
	Programming	& Enrique		September 2013
		Fernández		

S. No.	Title	Authors	Edition	Publisher
1	Robotics for Engineers.	Vorom Voron	1st edition,	McGraw Hill
1		i orani Koren,	1985.HMT	International,
2	Industrial Robotics	Groover, Weiss,	Ind adition 2012	McGraw Hill
2		Nagel,	2nd eanion, 2012.	International,
r	Robotics, control vision and	Fu, Lee and	2nd adition 2007	McGraw Hill
3	intelligence.	Gonzalez	2nd edition, 2007	International
4	Introduction to Robotics	Laha L Casia	Publishing, 3rd	
4		John J. Craig,	edition, 2010	Addison Wesley

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225203	Quality Control and Reliability Engineering	L = 2	T = 0	P = 0	Credits = 2
Engly officer Calcorne	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. Demonstrate the approaches and techniques	On successful completion of the course, the student
to assess and improve process	will be able to:
and/or product quality and reliability.	1. Attain the basic techniques of quality
2. Introduce the principles and techniques of	improvement, fundamental knowledge of
Statistical Quality Control and	statistics and probability
their practical uses in product and/or process	2. Use control charts to analyze for improving
design and monitoring	the process quality.
3. Illustrate the basic concepts and techniques	3. Describe different sampling plans
of modern reliability	4. Acquire basic knowledge of total quality
engineering tools.	management
	5. Understand the concepts of reliability and
	maintainability

Unit-I

Basic Concepts: Definitions of quality, Quality of design, Quality of conformance, and Quality of performance, Dimensions of quality, Quality characteristics, Quality control, Statistical quality control and cost of quality.

Fundamentals of Probability and Statistics: Events, Sample space, Probability rules, Dependent and Independent events, Statistical tools in quality control, Concept of variation, Graphical tools for data representation and analysis, Discrete and continuous probability distributions and their applications in quality control, numerical problems.

Unit-II

Control charts for Variables: Variation, Causes of variation, Objectives of control charts, Choice of variable, Subgroup size and subgrouping, frequency of sampling, control limits. Process capability analysis, Relationship of a process in control to specification limits, Variable charts - X bar chart, R chart, σ chart, revision of control limits and RPI, Introduction to cusum chart and moving range charts, numerical problems.

Unit-III

Control charts for Attributes: Control charts for fraction nonconforming (p chart, np chart) and nonconformities (c chart and u chart) with variable and constant sample size, Choice between variables and

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO1

CO2

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

attributes control charts, revision of control limits, numerical problems.

Failure Data Analysis: Introduction, Failure Data, Quantitative measures, MTTF, MTBF, Bathtub Curve, Mean Life, Life Testing, numerical problems, Introduction to Failure Mode and Effect Analysis.

Unit- IV

CO4

CO5

Acceptance Sampling: Fundamentals of acceptance sampling, Sampling methods, OC Curves and their characteristics, AQL, IQL, LTPD, AOQ/AOQL. Types of acceptance sampling-Single, Double, Multiple, and Sequential sampling plans, Average Total Inspection, comparison amongst sampling plans, numerical problems.

Unit- V

System Reliability: Definition, Series, parallel and mixed configuration, Block diagram concept, r-out-of-n structure solving problems using mathematical models. Difficulty in achieving reliability, Methods for improving reliability during design, Different techniques available to improve reliability, Reliability-Cost trade off, Prediction and Analysis, numerical problems.

Maintainability and Availability: Introduction, Techniques available to improve maintainability and availability, trade-off among reliability, maintainability and availability, Simple problem.

S. No.	Title	Authors	Edition	Publisher
1	Statistical Process Control	Eugene Grant,	-	McGraw
		Richard		Hill
		Leavenworth		
2	Quality Engineering in	G Taguchi	1989	McGraw Hil
	Production Systems			
3	Optimization &Variation	W.A. Taylor	1991	Tata McGraw Hill
	Reduction in Quality			

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	. Jurans Quality Planning and Analysis	Frank. M.Gryna Jr	-	McGrawHill
2	Reliability Engineering	LS Srinath	3rdEdition, 1991	Affiliated East West Pvt Ltd

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225204	Modeling & Simulation of Manufacturing System	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	20	140	3 Hours

	Course Objective	Course Outcomes
	1. Define the basics of simulation modeling and	On successful completion of the course, the student
	replicating the practical situations in organizations	will be able to:
	2. Generate random numbers and random variates	1. Describe the role of important elements of
	using different techniques.	discrete event simulation and modeling
	3. Develop simulation model using heuristic	paradigm.
	methods.	2. Conceptualize real world situations related to
	4. Analysis of Simulation models using input	systems development decisions, originating
	analyzer, and output analyzer	from source requirements and goals.
	5. Explain Verification and Validation of simulation	3. Develop skills to apply simulation software to
	model.	construct and execute goal-driven system
		models.
		4. Interpret the model and apply the results to
		resolve critical issues in a real-world
		environment.
		5. Understand the Empirical Discrete
		Distribution, Design and Evaluation of
		Simulation Experiments.
-	Unit-I	CO1

Principle of Computer Modelling and Simulation: Monte Carlo simulation. Nature of computermodeling and simulation. Limitations of simulation, areas of applications. System and Environment: Components of a system -discrete and continuous systems, Models of a system -a variety of modeling approaches. Simulation Software: Selection of simulation software, simulation packages.

Unit-II

CO2

CO3

Discrete Event Simulation: Concepts in discrete event simulation, manual simulation using event scheduling, single channel queue, too server queue, simulation of inventory problem. Statistical Models in Simulation: Discrete distributions, continuous distributions.

Unit-III

Random Number Generation: Techniques for generating random numbers- Mid square method -the mod product method -Constant multiplier technique -Additive congruential method -Linear congruential method -Tests for random numbers -The Kolmogorov Smimov test -the Chi-square test, Ivica Cmkovic, Ulfaskluna

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

and Annitaborsen Dohlgvist Publisher Artechhouse.

Unit- IV

CO4

Random Variable Generation: Inversion transforms technique exponential distribution. uniform distribution, Weibul distribution, continuous distribution, generating approximate normal variates-Erlang distribution.

Unit- V

CO5

Empirical Discrete Distribution: Discrete uniform -distribution Poisson distribution -geometric distribution -acceptance -rejection technique for Poisson distribution gamma distribution. Design and Evaluation of Simulation Experiments: variance reduction techniques antithetic variables, variables-verification and validation of simulation models.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Discrete Event System Simulation	J.Banks, J.S.	2009	PHI, New Delhi
		Carson, B. L.		
		Nelson and D.M.		
		Nicol		
2	Simulation Modeling and Analysis ^I ,	A.M. Law and	2008	Tata McGraw Hill Ltd,
		W.D.Kelton,		New Delhi

S. No.	Title	Authors	Edition	Publisher
1	Performance Modeling of	N. Viswanadham	2007	DHI Now Dolbi
1	Automated Manufacturing Systems	and Y. Narahari,	2007	FHI, New Delli
2	Simulation Principles & Methods	Gray Beal, Wajne		Winthrop Publishing
Z		J and Pooch UW,	-	Incorporate
	Discrete Event System Simulation	Banks, Carson,		
3		Nelson and	2001	Pearson Education, Asia
		Nicole		

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225221Smart Material & Structure		L = 2	T = 0	P = 0	Credits = 2
Engly offers Caberra	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective	Course Outcomes
1.	Main objective of this course is to teach students to model	On successful completion of the
	different types of smart materials and to design simple smart	course, the student will be able to:
	structures.	1. Students will learn how to model
		electro-mechanical behavior of
2.	The students will learn smart structures containing smart	piezoelectric materials.
	material-based sensors, actuators to perform functions like	2. Students will learn physical
	monitoring the health and/or performance the structure, and	mechanism that causes
	changing the shape or mechanical properties of the structure.	piezoelectric material behavior.
		3. Students will learn shape memory
3.	Students will be able to apply the techniques learned in this	alloy based actuators.
	class to produce solutions to industrial problems using smart	4. Students will be familiar with
	structures and materials.	practical smart structures with
		shape memory alloy components.
4.	The course will also help to build the necessary foundation	5. Students will learn how to model
	for the students to conduct research in the areas of smart	simple structures with integrated
	materials and smart structures.	piezoelectric sensors and
		actuators.

Unit-I

Overview of Smart Materials, Structures and Products Technologies. Smart Materials (Physical Properties) Piezoelectric Materials, Electro strictive Materials, Magneto strictive Materials, Magnetoelectric Materials. Magnetorheological Fluids, Electrorheological Fluids, Shape Memory Materials, Fiber-Optic Sensors.

Unit-II

Smart Sensor, Actuator and Transducer Technologies: Smart Sensors: Accelerometers; Force Sensors; Load Cells; Torque Sensors; Pressure Sensors; Microphones; Impact Hammers; MEMS Sensors; Sensor Arrays Smart Actuators: Displacement Actuators; Force Actuators; Power Actuators; Vibration Dampers; Shakers; Fluidic Pumps; Motors Smart Transducers: Ultrasonic Transducers; Sonic Transducers.

Unit-III

Measurement, Signal Processing, Drive and control Techniques Quasi-Static and Dynamic Measurement Methods; Signal Conditioning Devices; Constant Voltage, Constant Current and Pulse Drive Methods;

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO1

CO3

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Calibration Methods; Structural Dynamics and Identification Techniques; Passive, Semi-Active and Active Control; Feedback and Feed forward Control Strategies.

Unit- IV

CO4

Design, Analysis, Manufacturing: Case studies incorporating design, analysis, manufacturing and application issues involved in integrating smart materials and devices with signal processing and control capabilities to engineering smart structures and products.

Unit- V

CO4 Applications of Engineering Smart Structures and Products Emphasis on structures, automation and precision manufacturing equipment, automotive, consumer products, sporting products, computer and telecommunications products, as well as medical and dental tools and equipment.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Smart Materials and Structures -	M. V. Gandhi	1992 (ISBN:	So Thompson -
		and B.	0412370107).	Chapman & Hall,
				London; New York -
2	Smart Structures and Materials	B. Cui shaw	1996	Artech House, Boston,
			(ISBN0890066817).	-

S. No.	Title	Authors	Edition	Publisher
1	Handbook of Giant Magnetostrictive Materials	G. Engdahl	2000 (ISBN: 012238640X).	Academic Press, SanDiego, Calif.; London
2	Shape Memory Materials	K. Otsuka and C. M. Wayman -	1998(ISBN: 052144487X).	Cambridge UniversityPress, Cambridge; New York
3	Fiber Optic Sensors: An Introduction for Engineers and Scientists	Eric Udd	1991	JohnWiley & Sons, New York

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225222	Nano-Technology	L = 2	T = 0	P = 0	Credits = 2
Englanding Cohome	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective		Course Outcomes
1.	Know the types of nanotechnology, atomic	At	the end of the course the student will be able
	structure, molecular technology and	1.	Explain the fundamental principles of
	preparation of nano materials.		nanotechnology and their application to biomedical
2.	Understand the fundamentals of nano	•	engineering.
	electronics and its properties.	2.	Apply engineering and physics concepts to the
3.	Know the Silicon MOSFET's, QTD and		nano-scale and non-continuum domain.
	carbon nano tubes.	3.	Identify and compare state-of-the-art
4.	Understand the fundamentals of molecular		nanofabrication methods and perform a critical
	electronics		analysis of the research literature.
5.	Make them understand the fabrication of	4.	Design processing conditions to engineer
	nanostructures for advanced devices		functional nano materials.
		5.	Evaluate current constraints, such as regulatory,
			ethical, political, social and economic, encountered
			when solving problems in living systems

Unit-I

Metal Based Nanocomposites: Metal-Oxide or Metal-Ceramic composites, Different aspects of their preparation techniques and their final properties and functionality. Metalmetal nanocomposites, some simple preparation techniques and their new electrical and magnetic properties.

Unit-II

CO2

CO51

Design Of Super Hard Materials: Super hard nano composites, its designing and improvements of mechanical properties.

Unit-III

CO3

Mechanics Of Polymer Nanocomposites: Interfacial adhesion and characterization, factors influencing the performance of nano composites, physical and functional properties.

Unit- V

Characterization Of Polymer Nanotubes Based Composites: Mechanical, Electrical and Thermal

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Properties and their applications - Polymer / nanofillers (metallic nano powders) systems, Rheological measurements, processing characteristics.

Testing Of Nanocomposites: Thermal analysis such as TGA, TMA, DSC, DMTA Biggest Obstacle to Business Breakthrough, Integration of Ideas.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	"Nanophysics and	Edward L. Wolf	2006	Second Edition, John
	Nanotechnology -An			Wiley & Sons,
	Introduction to Modern Concepts			
	in Nano science"			
2	Surface Science: Foundations of	K.W. Kolasinski	2002	Wiley
	Catalysis and Nano science.			

S. No.	Title	Authors	Edition	Publisher
1	Nanoparticulates as Drug	Vladimir P.	2006	Imporial Collogo Pross
1	Carriers	Torchilin	2006	Imperial Coneger less
2	Nanotechnology–Basic Science	Chapman &	2002	CDC
2	& Emerging Technologies	Hall	2002	CKC
	Nanomaterials and Nano	M Dees		
3	systems for	M Keza	2007	Springer
	BiomedicalApplications,	wiozafari		

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225223	Advance Material and Processing	L = 2	T = 0	P = 0	Credits = 2
Engly offers Caberra	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective	Course Outcomes
1.	Understand the manufacturing processes	On successful completion of the course, the student
	including stir casting, tape castingprocess and	will be able to:
	high energy rate forming.	1. Classify materials and physical characteristics.
2.	Identify suitable hybrid welding process for	2. Understand iron carbon equilibrium diagram,
	welding a given material.	TTT diagram, heat treatment process of various
3.	Explain the working principle of Electron beam,	steels.
	laser beam and laser hybrid	3. Understand alloys of various nonferrous metals.
	welding processes and suggest their applications.	4. Understand polymers, ceramics and their
4.	Apply advanced casting methods including V-	mechanical – thermal properties.
	process, lost foam process and Magnetic	5. Identify the composites and their structure and
	molding process for ceramics and composite	Understand applications of ceramics.
	materials.	
5.	Apply friction and friction stir welding processes	
	to weld difficult-to-weld materials	

Unit-I

Classification and characteristics: Metals, Ceramics, Polymers and composites. General properties and structure: Atoms, molecules bonds in solids, Crystalline - Defects in Metallic structure, Dislocations and plastic deformation - Strengthening mechanism - grain size, dislocation - Cold work, precipitation hardening, dispersion hardening - phase reactions, fatigue and Creep behavior.

Unit-II

Ferrous Alloys: Iron carbon equilibrium diagrams - Steels and cast irons - properties, structure, composition and applications transformation hardening in steels - TIT diagrams - Heat treatment processes - Effect of alloying elements - High alloy steels, Stainless steel types, tool Steels, Manganese steels, heat resistant steels, HSLA, Maraging steels.

Unit-III

Non-Ferrous alloys: Alloy's of copper, Aluminum, nickel, magnesium, titanium, lead, tin, Zinc - composition, heat treatment, structure, properties and application.

Unit- IV

Polymers and polymerizations: Structure and properties of thermoplastics and thermo sets – Engineering

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO3

CO4

CO2

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Applications - property modifications - Mechanical and thermal behavior – processing methods. Ceramics : Nature and structure of Ceramics - Refractory Abrasives glasses - glass ceramics - Advanced ceramics processing methods.

Unit- V

CO5

Composites: Definition - classification and characteristics of composite materials - Volume fraction - laminated composites particulate composites, fibrous composites - Types of reinforcements, their shape and size - production and properties of fiber reinforced plastics, Metal Matrix composites and ceramic matrix composites - Applications. Processing of Polymers: composites, ceramics - thermal spraying - Ion beam machining diamond coating techniques-tribological Applications.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Engineering Metallurgy	Raymond and Higgens		ELBS/EA
2	Introduction to Material Science and Engineering	James.F.Shackleford	7th edition	Mc MillaNY
3	Powder Metallurgy	,-	-Vol.7	Metals Hand Book ASM, USA

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225224 Organizational Behaviour		L = 2	T = 0	P = 0	Credits = 2
Enclusting Cohome	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

	Course Objective	Course Outcomes
1	. To learn the basic concepts of Organizational	At the end of the course the student will be able to:
	Behaviour and its applications in contemporary	1. Define organizational behaviour, analyze
	organizations.	discipline and area of application in business.
2	. To understand how individual, groups and	2. Understand personality, interpersonal and
	structure have impacts on the organizational	intergroup behaviour.
	effectiveness and efficiency.	3. Understand group types, norms and decision
3	. To appreciate the theories and models of	making.
	organizations in the workplace.	4. Understand nature and development of leadership
4	. To creatively and innovatively engage in solving	and types of power.
	organizational challenges.	5. Learn the management of conflict, development,
5	. To learn and appreciate different cultures and	effectiveness and cross-cultural management.
	diversity in the workplace.	

Unit-I

CO51

Organizational Behavior: Definition, need for studying Organizational Behavior, Disciplines involved in the study of Organizational Behavior, -Contributing disciplines and area like psychology, social psychology, economics, anthropology etc. Application of Organizational Behavior in Business.

Unit-II

Individual behaviour: Personality, perception, learning, attitudes inter-personal behaviour – Group and inter-group behaviour.

Unit-III

Group Dynamics: Formal and Informal Group, Group Norms, Group Cohesiveness, Group Behaviour and Group Decision – making

Unit- IV

CO4

CO5

Motivation and morale, leadership-nature, styles and approaches, development of leadership including laboratory training. Power and Authority – Definition of Power – Types of Power.

Unit- V

Management of change, Conflict Management, Organisation Health, Development and Effectiveness. Management of culture, Cross Cultural Management.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO3

Shri Shankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Text Books:					
S. No.	Title	Authors	Edition	Publisher	
1	Organizational Behaviour	Nelson & Quick,		Cengage learning	
2	Organizational Behaviour	S. Fayyaz		Atlantic publisher	
		Ahamed and			
		others			

S. No.	Title	Authors	Edition	Publisher	
1	Understanding Organizational	Domock II	Inded	Oxford University	
1	Behavior	Fareek. U	2110 eu.	Press	
2	Human behavior at work	Newstrom J.	12th od	Tata McCraw Hill	
-		W., & Davis, K	1211100.		

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225291	Industrial Robotics Lab	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	75	-	75	150	3 Hours

Course Objective	Course Outcomes
1. Learn about the types of robots used in material	On successful completion of the course, the student
handling systems.	will be able to:
2. Understand the use of vision systems in	1. Differentiate the various types of Industrial Robots
automation systems.	and their architecture.
3. Gain knowledge on the different methods of	2. Apply the concepts of image processing for robotic
material handling	inspection systems.
	3. Analyze the applications of robots in various
	industrial application.
	4. Design and fabricate simple grippers for pick and
	place application.
	5. Identify the right Robot for a given industrial
	application.

List of Experiments

- 1. ASSIGNMENT ON INTRODUCTION TO ROBOT CONFIGURATION
- 2. DEMONSTRATION OF ROBOT WITH 2 DOF, 3 DOF, 4 DOF ETC.
- 3. TWO ASSIGNMENTS ON PROGRAMMING THE ROBOT FOR APPLICATIONS
- 4. TWO PROGRAMMING EXERCISES FOR ROBOTS
- 5. TWO CASE STUDIES OF APPLICATIONS IN INDUSTRY
- 6. EXERCISE ON ROBOTIC SIMULATION SOFTWARE

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

Subject Code ME225292	Modeling & Simulation of Manufacturing System Lab	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	TA	Total	ESE Duration
	75	-	75	150	3 Hours

Course Objective	Course Outcomes
Course Objectives:	On successful completion of the course, the student
1. To give exposure to software tools needed	will be able to:
to analyse engineering problems.	1. The student will be able to appreciate the
2. Expose the students to different applications	utility of the tools like ANSYS or FLUENT in
of simulation and analysis tools	solving
3. To impart the fundamental knowledge on	real time problems and day to day problems.
using various analytical tools like ANSYS,	2. Use of these tools for any engineering and real
FLUENT, etc., for Engineering Simulation.	time applications.
4. To know various fields of engineering	3. Acquire knowledge on utilizing these tools for
where these tools can be effectively used to	a better project in their curriculum as well as they
improve the output of a product.	will be prepared to handle industry problems with
5. To impart knowledge on how these tools are	confidence when it matters to use these tools in
ued in Industries by solving some real time	their employment.
problems using these tools.	

List of Experiments

1. DRAFTING : Development of part drawings for various components in the form of orthographic and isometric. representation of dimensioning and tolerances scanning and plotting. study of script, DXE and IGES files.

2. PART MODELING : Generation of various 3D models through protrusion, revolve, shell sweep. creation of various features. study of parent child relation. feature based and boolean based modeling surface and assembly modeling. study of various standard translators. design simple components.

3. a) Determination of deflection and stresses in 2D and 3D trusses and beams.

b) Determination of deflections component and principal and Von-mises stresses in plane stress, plane

strain and Axisymmetric components.

- c) Determination of stresses in 3D and shell structures (at least one example in each case)
- d) Estimation of natural frequencies and mode shapes, Harmonic response of 2D beam.
- e) Steady state heat transfer Analysis of plane and Axisymmetric components.
- 4. a) Development of process sheets for various components based on tooling Machines.
 - b) Development of manufacturing and tool management systems.
 - c) Study of various post processors used in NC Machines.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

2nd Semester M. Tech. (Production Engineering)

d) Development of NC code for free form and sculptured surfaces using CAM packages.

e) Machining of simple components on NC lathe and Mill by transferring NC Code / from a CAM package.

f) Quality Control and inspection.

Packages to be provided to cater to drafting, modeling & analysis from the following: Auto CAD, Micro Station, CATIA, Pro-E, I-DEAS, ANSYS, NISA, CAEFEM, Gibbs CAM, Master

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards